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An effective quasi-one-component model for homogeneous vapor-liquid nucleation of nonideal binary
mixtures in the regime of retrograde condensation is proposed. A transformation from the original
binary to an effective unary system is accompanied by renormalization of the surface tension. A general-
ized Fisher droplet model for the cluster distribution is formulated and applied at the effective saturation
point within the framework of a kinetic approach. Unknown parameters of the renormalized surface
tension are found from the equations for pressure, vapor density, and isothermal compressibility of the
effective system. The theory contains no adjustable parameters. A n-nonane—methane mixture is stud-
ied at conditions corresponding to the retrograde condensation (pressures > 10 bar). Calculated nu-
cleation rates agree fairly well with the recent experimental data whereas predictions of the classical
binary nucleation theory are quite poor especially for high pressures (> 30 bar).

PACS number(s): 44.60.+k, 82.60.Nh, 64.60.Qb, 05.70.Fh

I. INTRODUCTION

The theory of homogeneous nucleation in binary mix-
tures was formulated by Reiss [1] as a generalization of
the classical Becker-Doring-Zeldovich phenomenological
theory of one-component nucleation [2,3]. According to
[1], the Gibbs free formation energy AG(n ,4,ng) of a
liquid droplet, containing n , molecules of component A
and np molecules of component B, in a supersaturated
vapor mixture forms a saddle-shaped surface such that
AG* represents the height at the saddle. The steady-
state nucleation rate J is given by

J =Joexp(—AG* /kyT) , (1)

where T is the temperature and ky the Boltzmann con-
stant. Kinetics of binary nucleation (contained in the
preexponential factor Jy), first discussed by Reiss, was
based on the fact that droplet growth across the saddle
point goes in the direction of steepest descent on the AG
surface; in other words, the form of AG(n 4,ng) alone
determines the direction of droplet growth. Stauffer [4]
improved the approach of Reiss; his main result states
that the growth kinetics is determined from a combina-
tion of energetic and kinetic factors and not only by the
steepest descent direction on the energy surface. An ap-
proximate expression for the kinetic prefactor based on
the concept of virtual monomers was proposed recently
by Kulmala and Viisanen [5].

A peculiar thing about mixtures (not only binary) is the
existence of surface enrichment [6], meaning that the
composition inside the droplet can be different from that
near its surface (due to surface adsorption)-—an effect
that is not present in a single-component case. Wilemski
[6] proposed ““a revised classical theory” in which surface
enrichment is taken into account under the capillarity ap-
proximation by distinguishing between bulk and surface

molecules n; and n"f, respectively, of each species
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(i = A,B) and applying the Gibbs-Duhem equation for
the bulk and the Gibbs adsorption equation for the sur-
face. The Reiss-Wilemski-Stauffer theory represents
what is called now the classical theory of binary nu-
cleation (CBN). A careful analysis of CBN shows that its
thermodynamical part remains incomplete: extra rela-
tionships determining n " are necessary for calculation
of the free energy surface in the vicinity of the saddle
point. However, the influence of these quantities, con-
tained in J, on the nucleation rate is small because the
latter is dominated by the exponent AG *.

The crucial point of the theory is the choice of a model
for AG. This choice manifests itself in the determination
of the size and composition of the critical nucleus. The
nucleation rate depends sensitively on these quantities as
well as on the curvature of the nucleus. Recent experi-
ments by Strey, Wagner, and Viisanen [7,8] showed, in
agreement with earlier studies by Mirabel and Katz [9]
and Schmitt ez al. [10], that the CBN fails because it
inaccurately predicts the composition of the critical nu-
cleus and does not take into account the curvature
effects. Experimental investigations until now focused on
nearly ideal mixtures. For nonideal mixtures, exhibiting
a retrograde condensation behavior, composition, size,
and curvature effects should be even more pronounced.

In the present paper we study binary nucleation at con-
ditions of retrograde condensation. We propose an
effective (quasi-)one-component model of binary nu-
cleation and treat it within the framework of a semi-
phenomenological kinetic approach. This approach
proved to be successful for one-component nucleation
[11,12], which gives hope that it can be also useful for the
binary case. An effective one-component model is intro-
duced in Sec. II; its thermodynamics is discussed in Sec.
III. Section IV contains the results on steady-state nu-
cleation rate and critical cluster size. The proposed
theory is applied to the n-nonane—methane mixture at
conditions corresponding to retrograde condensation
(Sec. V). Conclusions are formulated in Sec. VI.
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II. FORMULATION OF AN EFFECTIVE
ONE-COMPONENT MODEL

We consider a nonideal binary mixture of components
A and B at initially gaseous state characterized by the to-
tal pressure p,, temperature Ty, and molar fractions y 4
and yg; ¥ 4 +yp=1 (no inert carrier gas is present). After
fast expansion the system is brought to a nonequilibrium
state—characterized by the total pressure p, temperature
T, and (the same) molar fraction y , —where nucleation
starts.

We focus on the regime of retrograde condensation:
the nucleation point (p, T';y 4) is situated inside the coex-
istence region of the phase diagram (see Fig. 1); the
boundary of this region (a ‘“coexistence envelope”)
represents a set of equilibrium pressure-temperature
points corresponding to the fixed value y , of the vapor
molar fraction of component A. At given p and T inside
the coexistence region the binary liquid-vapor equilibri-
um can exist. The latter is characterized by the equilibri-
um vapor molar fractions y; o(p, T'), the equilibrium liquid
molar fractions x;o(p,T) (3,;9,0=3X;%;0=1), and the
molecular volumes v3(p, T),v}(p, T) of the vapor and the
liquid phase, respectively; a degree of metastability of
component i can be characterized by a partial supersa-
turation

Si,O:yi/y,',o(p, T) (i=A,B). )

A peculiarity of the binary system is a dependence of
AG* on the a priori unknown bulk composition of the
critical nucleus x*=n*/(n} +ng) (the asterisk refers to
the critical nucleus), which should be determined from a
certain thermodynamic model. Our aim is to formulate
an effective one-component system with the same nu-
cleation behavior as for the original binary system. It im-
plies that an effective system should have the same energy
barrier.

Though the CBN model for x;* is not quite satisfactory
one can use it as a first guess for defining the parameters
of the effective system. The CBN equations read [6]

2 *v“‘
At + A o, (3)
r
2 *vl*
A+ T2 =0, @)
r
! Ya (PorToYa)

coexistence

region

(P, TiyA) vapor

vapor + liquid

T —>»

FIG. 1. Schematic representation of nucleation in a binary
mixture in the regime of retrograde condensation: (pg, To;) 4 ),
initial gaseous state; (p,T';y 4), nucleation point situated inside
the coexistence region.
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where A (p, T)=u'*(p, T)—u¥(p, T) is the difference be-
tween chemical potentials in the liquid and the vapor
phase taken at the same pressure p, r* is the radius of the
critical nucleus, y* is the surface tension, and u,-’ *is a
molecular volume of the component i in the liquid phase.
The value of the free energy barrier is then given by
AG*=(47/3)y*r*? (clusters are assumed to be spheri-
cal). Multiplying Eq. (3) by x} and Eq. (4) by x5 and
summing them up we obtain

r*=—— 2’}/*1)*

x3Ap% +x5Aug

where v*=x%v'*+x3vl* is a mean bulk molecular
volume in the liquid phase. Thus the energy barrier reads

167 y*3v"‘2

AG*= .
3 (x%Au +xpAuy)?

(5)

The classical one-component nucleation theory gives for
the energy barrier the result [13]

3,12
AG*EAGn :16_77_& s (6)
< 3 (Ap)?

where n, is the number of particles in the critical (one-
component) cluster, y is surface tension, v’ is the molecu-
lar volume in the liquid phase, and Au is the chemical po-
tential difference. An obvious similarity between Egs. (5)
and (6) suggests that an effective system should have pa-
rameters satisfying in the first approximation the condi-
tions y =y*, v'=v*, and Au=Au* =x%Au% +xFAu}.

For a binary liquid droplet with radius »* and compo-
sition x% in equilibrium with surrounding binary vapor
at temperature 7' we can write, using the incompressibili-
ty of the liquid phase [14],

27* _ kBT Z;
= lnz'Coex —(p—p
1

" I COCX)’ I:A,B , (7)
r V;

where p“**(x %, T) is the pressure corresponding to coex-
istence between the bulk vapor and the binary liquid
(plane interface) with the same composition x %, z; is the
fugacity of component i, and z/°* is the same quantity
referring to a plane interface. A comparison of this ex-
pression with Egs. (3) and (4) shows that Ay} can be re-
lated to a partial critical supersaturation of component i,
S, via

Auf=—kzTInS* (i=A4,B),
where

Z;

Sk=

1
coex
Z;

(p — coeX)viI*
A } . (®)
kT

If we assume the vapor to be a perfect gas mixture and
furthermore neglect (p —p°**) in Eq. (7), then the gen-
eral expression (8) is converted to a simple one (see, e.g.,
[15]): S*=p!/pf°™, where p/=y;p is an actual partial
vapor pressure of component i and pf°*(x%,T) is the
same quantity at coexistence. Thus
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* *
Ap*=—kpTIn[Sy 7Sy %] . 9)

A comparison of Eq. (9) with its one-component analog
Ap=—kyzT InS, where S is a supersaturation of a one-
component vapor, shows that in the same approximation
the quantity in the square brackets on the right-hand side
of Eq. (9)

ST =53 isyE
represents a supersaturation in the effective unary system.
From the input conditions (p, T,y ,) the critical composi-
tion is unknown. Therefore to proceed we will use the
equilibrium composition of the binary system at (p,T) as
a reference. We rewrite S* as

S*=S(1+W¥*), (10)
where
S=534°S5%" , (11)

S; o are given by Eq. (2) and W* is an unknown function
depending on the pressure, the temperature, and the com-
position of the critical cluster. Note that the quantity S
has the same structure as S* and is completely deter-
mined by the input conditions (and by the equilibrium
model). The unknown function ¥* accounts for compo-
sition, surface enrichment, and curvature effects incor-
porated in S*; it should vanish when the radius of the
critical nucleus becomes large: then its composition
should not differ from the equilibrium composition of the
bulk binary liquid x 4 o(p, T). It is reasonable therefore to
assume a power law form for ¥*,

h+1
1

r*

p* =a(so> , (12)

where a‘sm(p, T) and A (p, T) are some unknown functions
of pressure and temperature. One can also expect that in
the “single-component limit,” i.e., if only one of the com-
ponents is condensing, say, x ,o,=1, the function ¥*
should vanish for all 7* and S*—S 4,. In what follows
we will assume that ¥* <<1.

Substituting Eq. (10) into the energy barrier given by
Eq. (5) and linearizing in ¥* we obtain

16r [+ P
3 (—kzTInS)?

AG* (13)

where VT is proportional to ¥*
gre—2 1 g
! 3 In§

Analyzing Eq. (13) we can conclude that nucleation in
the original binary system is similar to nucleation in the
effective one-component system having supersaturation
equal to S and characterized by the renormalized surface
tension

yYi=y*(1+v¥).

Thus the supersaturation of the effective system can be

considered to be fixed by the input conditions (p, T,y 4)
whereas composition, surface enrichment, and curvature
effects incorporated in S* are “hidden” in the renormal-
ized surface tension. From the definition of S and Eq. (2)

it follows that the effective pressure p of the one-
component system is equal to

=y (14)

and the effective saturation pressure p, is given by

—_— X X

Pt =Y 46 V85 P - (15)
The ratio of these two quantities yields p /p ., =S, which
is a common definition of the supersaturation of a one-
component vapor. The effective molecular volume can be
approximated by the molecular volume of the binary sys-
tem in the liquid phase in equilibrium at (p,7):
v*=~vl(p,T). The (bare) surface tension of the critical

cluster y* can be written in a curvature-dependent form
similar to Tolman’s result for a spherical interface [16]

1
7’*27/0(17, T) 1+a(7,1)—r—*—

’

where the leading term y4(p, T) is the surface tension of
the infinite plane interface for the original binary system
in equilibrium at (p,T). An unknown function ag,”(p, T)
represents a “Tolman length.” The classical one-
component nucleation theory [13] establishes the follow-
ing relationship between the supersaturation S and the
radius of the critical cluster »*:

1 _ kyT
InS 2y}

r*

Then the renormalized quantity ¥, playing the role of
the surface tension in the effective system, reads

h
Pt=rep D) [1+a o | 2| | (16)
r r
where
1 kgT
a§”(p,T)=—§———,—a§°’
Yolo

denotes a new unknown function.

On the right-hand side of Eq. (16) we have skipped the
term proportional to (1/7*)" 11, keeping the first two
terms in powers of (1/r*). For large values of r* both
correction terms should vanish, therefore A (p,T)>0. It
is important to note that Eq. (16) is not a Taylor series of
surface tension in powers of inverse radius: the last term
on the right-hand side appears due to renormalization
procedure described above.

The radius of the critical cluster should be found from
the solution of the one-component nucleation problem
(Sec. IV). On the basis of these considerations we can
write the surface tension of an n-cluster (cluster contain-
ing n “particles”) in the effective one-component system
in a curvature-dependent form

rin)=yo[1+a,n " +an""7], 17



4394

where a},( p,T), a,(p,T), and h (p,T) are unknown param-
eters to be found from a thermodynamic model (see Sec.
III); we took into account that the radius of an n-cluster
is proportional to n'/3. Thus y} =% (n,), where n, is the
critical cluster size.

III. THERMODYNAMICS
OF THE EFFECTIVE SYSTEM

The aim of the present section is to determine the
values of parameters a,, a,, and h. They can be found
from analysis of thermodynamics of the one-component
system, formulated in the preceding section, at the
(effective) saturation point. About the effective system we
assume (as is commonly done in nucleation models) that
it can be viewed as a collection of noninteracting clusters
(intracluster interactions are, of course, important). Let
q, be the configuration integral for the n-cluster in a
domain of volume ¥ and z the fugacity. The grand parti-
tion function of the system can be written in an exponen-
tial form [17]

E=exp

As a result, the pressure equation of state, which we ap-
ply at the saturation point p,, V =kp T (InE),,, reads

Psat

T = (18)
kB ngl

sat

and the number density of n-clusters at the same point is

4,
v

n

pn,sat:
sat

With the help of the standard thermodynamic transfor-
mations the right-hand side of this expression can be
rewritten in terms of the grand potential of the n-cluster
Q

n,sat?

1 -po
Prnysat ™ ?e meat,

B=1/kyT . (19)
Thus Q, ., represents an energy barrier to form an n-
cluster at the saturation point. The pressure equation is
therefore a sum of ideal gas contributions of various clus-
ters

Psat

2 pn sat * (20)
B n=

The right-hand side of Eq. (18) represents a generating
function: various thermodynamic properties can be ex-
pressed in terms of its derivatives with respect to z. In
particular, for the vapor density pg,, and the isothermal
compressibility of the vapor at the saturation point
Xsat =[(1/p°N(3p"/3p) ], We obtain [17]

o

Peat™= 2 RPy,sat > 21

n=1

kB T(p:at )ZXsat= z nzpn,sat . (22)

n=1
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It must be noted that Eqs. (20)—(22) are quite general and
do not depend on a specific form of the configuration in-
tegral or, equivalently, a form of Q,, ..

We will specify Q,, by formulating a generalized
Fisher droplet model, which is an extension of the classi-
cal Fisher model [17] to a binary mixture described in
terms of an effective unary system

ﬁﬂnvsatZBﬂ(n)s,n2/3+?lnn —In(g, V) . (23)

The first term on the right-hand side represents a dimen-
sionless surface energy of a cluster;
s1(p, T)=(36m)3(v})*/3. Terms with the effective Fish-
er parameters g, and 7 arise from various degrees of free-
dom of a cluster and from configurational effects. We
define g, and 7 by the following simplest mixing rules
satisfying the single-component limit:

T=X,40T4FtXp0oT5 »
q0=X 4,090, 4 TXp5090,B »

where 7; and ¢, ; are the individual Fisher parameters of
the component i. Those are related to its critical state
parameters—pressure p.;, temperature TC,, and num-
bers density p, ; —via [18]:

=40,k T,;5(7;),

where {(x)=37_;n"* is the Riemann zeta function.
From Eqgs. (23), (19), and (17) we obtain for the cluster
distribution

Pei=q0,:5(t;i—1), p.;

Prsat =q0€xp[ — (1 +a N 134 g onh3)
Xn23—FInn] , (24)
where
_ p.Dsi(pT)
o kyT

is a dimensionless macroscopic surface tension. For the
three unknown parameters a,, a;, and & we have three
equations (20), (21), and (22). The left-hand sides are
known for given (p, T): the saturation pressure is deter-
mined by Eq. (15) and the vapor density and the
compressibility can be expressed, e.g., with the help of
the virial expansion of the third order at the saturation
point [19]:

_ )2 — 3
Pat = | Pt =2 =, | Psat
P! —B +(2B*~C) ,
wt” T kgT kpT
— 2
Psat = Psat
kgT( )X —3B |—
B psat sat kBT kBT
3
+(10B 2—4C) Pa ,
kgT

where B and C are the second and the third virial
coefficients of the effective system, respectively; they can
be calculated using the individual virial coefficients of the
components at temperature T and corresponding mixing
rules.
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One special case of the system parameters should be
discussed separately. If A=1 then renormalization of
surface tension results only in renormalization of the di-
mensionless Tolman length; Eq. (17) in this case reads

ﬂ(n)=1/0(p,T)[1+a;,n_”3] (25)

with a},=a,+a, being a new unknown Tolman length.
It can be found from the pressure equation (20); density
and compressibility equations are not needed (see also
[20D).

Therefore, in what follows we will search for a,, a,
and & excluding the case A=1. Not too close to the criti-
cal conditions (when 6,=> 1) the series on the right-hand
side of Egs. (20)—(22) rapidly converge due to exponent in
Pnsa- Truncating each series at n=3 we obtain a system
of three linear equations with respect to number densities
of monomers, dimers, and trimers. This system has a
unique solution:

Prat g tgp+iC,
490 2
2 2
P2,sat _ 4B
— - B.—-_-_ ’
90 Z

Pisat 245 dc

%0 Zo
where the dimensionless quantities on the right-hand side
J
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are Z=p,/(qoksT), 45 =4oBZ}, and gc =4, *CZ3.
Having defined the densities we can obtain from Eq.
(24) the set of three equations for «,, a;, and A. Intro-
ducing for simplicity the notations
In3

521/3’ bE31/3, ="
N = 2

v

and a new variable
—~—h/3 < < 1
cp=2 , 05¢, =1, ch—r‘é; ,

these equations can be written as

14+a,+0a,=——In |22t | 26)
0 90
az+aay+a2asch=——l—ln g7l ) 27
6o 90
b2+ba,+ba,c)=——In 3752 28)
8o 90

Excluding @, and a; from Egs. (26) and (27) we obtain a
nonlinear equation for c,,:

¢=%u+@%—%. (29)

Here Q(p,T) is a parameter characterizing a given state
of the system

— L (372 g b L o P2 1y ap2 402
1 6o 90 6o d0
S P P (I N LT 1 PR
6o 490 6o 90

An analysis of Eq. (29) can be made on the basis of its
graphic representation shown in Fig. 2. For all values of
Q there is at least one solution (point A4 in Fig. 2)
c,=1/a=2"12 [it follows from the obvious identity
(1/aY=1/b]. This root corresponds to # =1 and there-
fore has to be excluded. For Q <O there are no other
solutions; physically it means that for the states with neg-
ative Q the renormalized surface tension has the Tolman
form (25) and a, =0.
For 0<Q <Q,, where

Q,=y —1~0.585

[the straight line given by the right-hand side of Eq. (29)
with Q =Q, tangential to the curve ¢} at the point A],
there is a root in the interval 0 <c, <1/a, corresponding
tol<h <. ForQ, <0 <Q,,, where

b—a
Q** =mz0.701

(the straight line with Q@ =Q, . intersects the curve ¢} at
¢, =1), there is a root in the interval 1/a <c¢, <1, corre-

1
o
—~
c

1

=4
2
(e}

T+
z
i)
E C, y 6‘8’
h //Q; BRI &

> G, ‘- O =

= Pl

o G e 0 o

- o7 P
_0.5 ‘ 1 - -
0 0.2 0.4 0.6 0.8 1
Ch

FIG. 2. Graphic representation of Eq. (29): Q(p,T) charac-
terizes the state of the system. The curved line is cj; the
straight lines correspond to the right-hand side of (29) with
three different values of Q: Q=0, Q, =0.585, and Q4+« =~0.701.
All lines intersect at point 4.



4396

sponding to 0<h<1. When ¢, is found the other two
parameters are calculated from Egs. (26) and (27):

——Lln 2“_'———p2’_sat +-—1—ln ——pl_'_s_at —a’+a
o _ 1 6o 90 0 90
s 2 b
a ch_i
a
1 P1,sat
a,=——In|— |—a,—1.
4 o 90 ’

For Q > Q,, we find ourselves again in the Tolman re-
gime. The state with Q (p,T)=Q, yields a singularity in
the behavior of thermodynamic parameters @, and a.
For this particular state we have to return to the Tolman
regime, though predictions of the nucleation theory can
become poor. We accomplished the discussion of ther-
modynamics of the effective system so that all thermo-
dynamic parameters are defined.

IV. STEADY-STATE NUCLEATION RATE

Kinetics of nucleation in the effective unary system is
supposed to satisfy the following usual assumptions: (a)
cluster growth and decay are dominated by monomer ad-
dition (condensation) and monomer extraction (evapora-
tion) and (b) mass accommodation coefficients are equal
to unity. The kinetic process rapidly reaches a steady
nonequilibrium state. In the framework of the kinetic ap-
proach to one-component nucleation formulated by Katz
and Wiedersich [21] (see also [12]), the steady-state nu-
cleation rate in the effective system reads

172
H"(nc )

2

=n
vs, S

c

J= (31

c
Pn,,sat -

2

Here s, =s;n?/? is the surface area of an n-cluster,

VZ—_p;_“—‘——
V 2am kyT

is monomer flux to the unit surface m; =M /N, N, is
the Avogadro number, and

M=x,,M +xp,Mg

is an (effective) molar weight, M, being the individual mo-
lar weight of the component i of the original binary sys-
tem. The function H (n) is defined as

H(n)=In(vs,S "p, ca) -

The critical cluster size n, is given by minimization of
function H:
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where the prime denotes the differentiation with respect
to the argument. Using the results obtained in the previ-
ous sections, this equation takes the form

—n JnS+26,n2"+ L6, n}”?

_h 3_2 Opan ~H VA4 F—2=0 (32)
while the final expression for the nucleation rate reads
1|6 - (h—=2)h+1)  _
J=—3— 1-7—; 1+a,n, 1/3—fozsnc h/3
9 2 2 Ps
2 |72y 2 ) SR A S
2m 3 V 2rm ks T
Xexp[ —0y(1+a,n " *+an"*)n2"?
—7nn_.] . (33)

V. NUCLEATION OF A BINARY
N-NONANE-METHANE MIXTURE

We apply the proposed theory to the binary mixture of
hydrocarbons n-nonane ( 4)-methane (B). At high pres-
sures (p >10 bar) the real gas effects are highly pro-
nounced and both of the components are present in the
condensed phase in considerable amounts.

A. Thermophysical data

Individual thermophysical properties of the com-
ponents are listed in Table I, where in addition to the
properties mentioned earlier we present the values of
Pitzer’s acentric factor w and parachor [P] [used for cal-
culation of yy(p, T') and virial coefficients].

The second virial coefficient for n-nonane is given by

(11]

B, =—A—71;—[369.2—705.3/tA +17.9/13

—427.0/t3—8.9/t%]

and for methane by [22]
kgT
By=—2-5210.083—0.422/1}%
pc,B
+0p(0.139—0.172/t42)] ,
where t;=T/T,; is reduced temperature of the com-

ponent i. The effective second virial coefficient is built on
the basis of the standard mixing rule

H'(n,)=0, E=x,24,0BA +x§,()BB +2x 40%p0B s »
TABLE I. Thermophysical properties of n-nonane and methane [22].
Component M (g/mol) T, (K) p. (bar) pe (cm™3) ) [P]
n-nonane 128.259 594.6 23.13 1.09 X 10% 0.445 387.6
methane 16.043 190.4 46.0 6.07 X 10%! 0.001 53.9
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where B ,p is given in [22], Chap. 4.
For the third virial coefficient the generalized empirical
correlation developed by Orbey and Vera [23] is used:

2
kgT,;
B+ ¢,i (f[(m+wifi(1))’ l=A,.B
Pc,i

i

with
£19=0.01407+0.024 32 /t}#—0.003 13 /¢ %>
and
fiV=—0.02676+0.01770/t>%+0.040 /¢ >°
—0.003/t5°—0.002 28 /1% .

We have to note that this correlation gives fair estimates
for nonpolar gases for the reduced temperatures 7 > 1,
which is the case for methane at the nucleation point
(p,T) in Fig. 1. For t <1, which is the case for n-nonane,
the third virial coefficient rapidly decreases and becomes
negative. The negative branch of C(T) is very hard to
observe experimentally [19], therefore predictions of
C(T) in this temperature domain become less reliable.
The effective third virial coefficient reads

EZXA,OCA +xB,0CE .
Equilibrium properties of the binary mixture at (p, T') are
found from the Redlich-Kwong-Soave equation of state
_ pkB T
P 10,0

app’
1+b,p

Expressions for the parameters a,, and b,, are given in
[22], Chap. 4. Figure 3 shows the equilibrium p-T lines
for the mixture; each line corresponds to a fixed value of
the equilibrium vapor molar fraction of n-nonane, y , 0.

There is a lack of experimental data on surface tension
of mixtures at high pressures. For estimating y4(p,T) we
use an empirical “parachor method” (MacLeod-Sugden
correlation) [22], Chap. 12:

B x.,o y.,o
[rolp, D14= 3 [P;] —17‘—'%‘
i=4 Vo Vo

p (bar)

o . ,
220 230 240 250 260 270 280
T (K

FIG. 3. Equilibrium p-T diagram for the n-nonane—methane
mixture. Each line corresponds to a fixed value of the equilibri-
um vapor molar fraction of n-nonane: 1, y,,=1X10"% 2,
Ya0=8X107% 3, y,0=6X107% 4, y,,=4X107% 5,
Ya4,0=2X107%6,y,,=1X107°.
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B. Results

We analyze nucleation in the n-nonane—methane mix-
ture at temperature 7=240 K and pressures 1=<p <60
bar and compare it with experimental data of Looijmans,
Luijten, and van Dongen [24] and predictions of CBN.

The behavior of thermodynamic parameters Q,a,,a;,h
defined in Sec. III is shown in Fig. 4. Negative Q corre-
sponds to the low pressure domain p < 18 bar; the surface
tension in this domain has the Tolman form. A physical
explanation of this result follows from the fact that at low
pressures the light component (methane) is present in the
liquid phase at relatively small amounts x5, <<x 4, and
nucleation of the binary mixture does not differ much
from the nucleation of the pure heavy component
(nonane); therefore in this domain only the Tolman
correction term for the surface tension survives. Howev-
er, the numerical value of the Tolman length «a,
effectively takes into account the presence of a certain
amount of methane in the condensed phase. A Tolman
regime is found again for large pressures p > 54 bar, but
in this domain due to possible mutual cancellation of
various effects.

In the intermediate domain of pressures 18 <p <54 bar
both the Tolman and the o, terms in (17) are important.
The exponent h decreases with pressure. The singularity
point Q@ =Q, corresponds to p ~44 bar.

The results for the nucleation rate for 7=240 K are
presented in Fig. 5 along with the experimental data of
[24]. In this figure labels are the corresponding pressures
in bars: horizontal labels refer to the theoretical lines, in-
clined labels to the sets of experimental points. Theoreti-
cal predictions appear to agree well with experiment for
10=<p =30 bar: the difference between experiment and
theory is approximately one order of magnitude. The
comparison becomes worse for p=40 bar—about a two
to three orders of magnitude differences; however, for
this pressure experimental data possess rather large
scattering. Figure 6 displays the predictions of CBN [25]
along with the same set of experimental data as in Fig. 5.
CBN essentially underestimates the nucleation rate: the

4
- th o
A .
—q '
e h |
2 | — singutarity . ; ° 110
.: x .‘_.J_.__/
e . =
. . P
. !s
4 . . . N BTN ~Jdo
0 10 20 30 40 50 60
p (bar)

FIG. 4. Behavior of the thermodynamic parameters
Q,a,,a,,h for the n-nonane—methane mixture at 7=240K as a
function of pressure. The singularity point Q =Q, (thick verti-
cal line) corresponds to p ~44 bar.
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FIG. 5. Nucleation in the n-nonane—methane mixture at
T=240 K as a function of partial supersaturation of n-nonane
S 4,0- Dashed lines, present theory; closed circles, experimental
data of [24]. Labels are the corresponding pressures in bars
(horizontal labels refer to the lines, inclined labels to experimen-

tal data).

discrepancy with experiments varies from three orders of
magnitude at p=10 and 20 bar up to nearly 15 orders of
magnitude at 40 bar.

It must be noted that accuracy of our theoretical pre-
dictions is related to the accuracy of surface tension for
the plane interface y,(p, T) and accuracy of the third viri-

al coefficient.
VI. CONCLUSIONS

We have proposed an effective one-component model
for homogeneous vapor-liquid nucleation of nonideal
binary mixtures in the region of retrograde condensation.
A transformation from the original binary to an effective
unary system is accompanied by renormalization of sur-
face tension. The latter quantity effectively takes into ac-
count composition, surface enrichment, and curvature
effects. The thermodynamics of the effective system is
based on the generalized Fisher droplet model with the
renormalized surface tension; this model is applied at the
effective saturation point. This is different from the phe-
nomenological model for the energy barrier inherent to
CBN. The theory results in a closed form expression for
the nucleation rate Eq. (33). It contains no adjustable pa-

V. 1. KALIKMANOV AND M. E. H. van DONGEN

10'2

p(bar) = 10
10" (theory)
10™ | I
;u,
e 10°F °,
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10"
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FIG. 6. Nucleation in the n-nonane—methane mixture at
T=240 K as a function of partial supersaturation of n-nonane
S 4,0- Solid lines, CBN; closed circles, experimental data of [24].
Labels are the corresponding pressures in bars (horizontal labels
refer to the lines, inclined labels to experimental data).

rameters. As is common for an effective medium ap-
proach, “individual” information about species in the
critical cluster is lost: particles of the effective system are
indistinguishable.

The theory was applied to the n-nonane—methane mix-
ture at conditions corresponding to the retrograde con-
densation. Calculated nucleation rates agree fairly well
with the recent experimental data whereas predictions of
CBN are poor: for high pressures the discrepancy be-
tween CBN and experiment is up to 15 orders of magni-
tude. One of the merits of the present approach is that it
can be extended to nucleation in multicomponent mix-

tures.
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